This commit is contained in:
2023-11-25 07:59:12 +01:00
parent 0eb80f8965
commit d41bb6e734
7 changed files with 165 additions and 6 deletions

View File

@@ -0,0 +1,47 @@
from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.aqua.components.optimizers import COBYLA
from qiskit.circuit import Parameter
import numpy as np
# Define the desired probability distribution
target_probs = [0.1666666666] * 6
# Define the quantum circuit
circ = QuantumCircuit(6, 6)
circ.h(range(6))
# Add the parameterized Ansatz using Parameter
params = [Parameter(f'var{i}') for i in range(6)]
circ.rx(params[0], 0)
circ.rx(params[1], 1)
circ.rx(params[2], 2)
circ.rx(params[3], 3)
circ.rx(params[4], 4)
circ.rx(params[5], 5)
# Define the optimization objective function
def objective_function(params):
# Update the circuit with new parameters
updated_circ = circ.bind_parameters({params[i]: optimal_params[i] for i in range(6)})
# Compile and run the circuit
t_circ = transpile(updated_circ, Aer.get_backend('qasm_simulator'))
qobj = assemble(t_circ)
result = Aer.get_backend('qasm_simulator').run(qobj).result()
# Calculate the probability distribution
counts = result.get_counts()
probs = [counts.get(format(i, '06b'), 0) / result.shots for i in range(2 ** 6)]
# Calculate the objective function (sum of squared differences)
return sum((probs[i] - target_probs[i]) ** 2 for i in range(2 ** 6))
# Optimize the circuit parameters
optimizer = COBYLA(maxiter=1000)
optimal_params = optimizer.optimize(num_vars=6, objective_function=objective_function)
# Print the optimal parameters
print("Optimal Parameters:", optimal_params)